The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation.
نویسندگان
چکیده
The tumor suppressor p53 protein suppresses cell growth by inducing cell cycle arrest or apoptosis. Despite the fact that p53-dependent p21-mediated G1 arrest induced by DNA damage is well defined, the role of p53 in the cell cycle in response to the MAKP signaling remains to be determined. Here we show that MKP1, a member of the dual specificity protein phosphatase family capable of inactivating MAPKs, is a transcriptional target of p53. MKP1 mRNA and protein levels were increased upon p53 activation in several well defined p53-regulated cell systems. p53 bound to a consensus p53 binding site located in the second intron of the MKP1 gene and transactivated MKP1 in reporter gene assays. Inhibition of phosphatase activity impaired p53-mediated G1 arrest in arrested human glioblastoma GM cells in response to growth factor stimuli. Importantly conditional expression of MKP1 prevented arrested human cancer cells from entering into the cell cycle. Thus, these results provide a novel mechanism by which p53 controls the cell cycle in response to the MAPK signaling in the absence of DNA damage and suggest that p53 may negatively control the MAKP pathway via MKP1.
منابع مشابه
Effects of berberine on the secretion of cytokines and expression of genes involved in cell cycle regulation in THP-1 monocytic cell line
Objective(s): Current acute myeloid leukemia (AML) therapeutic strategies have irreversible side-effects. Berberine (BBR) is an isoquinoline alkaloid, which has been known as an aryl hydrocarbon receptor (AhR) ligand. AhR is a cytoplasmic receptor, which is involved in the regulation of cellular and immune responses. Here, we investigated the expression profile of genes involved in the cell cyc...
متن کاملMitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis.
The p53 tumor suppressor plays critical roles in diverse cellular responses such as cell cycle arrest, senescence, and apoptosis through transcriptional control of its target genes. Identification and characterization of new p53 target genes will advance our understanding of how p53 exerts its multiple regulatory functions. In this article, we show that mitogen-activated protein kinase phosphat...
متن کاملCell Cycle Regulation via the p53, PTEN, and BRCA1 Tumor Suppressors
Multiple cell cycle regulatory proteins play an important role in oncogenesis. Cancer cells may arise from dysregulation of various genes involved in the regulation of the cell cycle. In addition, cyclin-dependent kinase inhibitors are regarded as key regulators for cancer cell proliferation. Accordingly, permission of impaired cells by cell cycle checkpoints suppresses carcinogenesis. P53, a m...
متن کاملNovel Isatin-based activator of p53 transcriptional functions in tumor cells
Bioinorganic medicinal chemistry remains a hot field for research aimed at developing novel anti-cancer treatments. Discovery of metal complexes as potent antitumor chemotherapeutics such as cisplatin led to a significant shift of focus toward organometallic/ bioinorganic compounds containing transition metals and their chelates as novel scaffolds for drug discovery. In that way, transition met...
متن کاملSHP-2 tyrosine phosphatase inhibits p73-dependent apoptosis and expression of a subset of p53 target genes induced by EGCG.
Green tea polyphenol, epigallocatechin-3-gallate (EGCG) differentially regulates the cellular growth of cancer cells in a p53-dependent manner through apoptosis and/or cell cycle arrest. In an effort to further elucidate the mechanism of differential growth regulation by EGCG, we have investigated the role of the tyrosine phosphatase, SHP-2. Comparing the responses of mouse embryonic fibroblast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 42 شماره
صفحات -
تاریخ انتشار 2003